
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332878311

Quality and quantity of genetic relatedness data affect the analysis of social
structure

Article in Molecular Ecology Resources · May 2019

DOI: 10.1111/1755-0998.13028

CITATIONS

0
READS

55

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Shark Bay Dolphin Research Project View project

Tattoo-like skin lesions in bottlenose dolphins in Shark Bay, Australia View project

Vivienne Foroughirad

Georgetown University

6 PUBLICATIONS 67 CITATIONS

SEE PROFILE

Alexis L. Levengood

University of the Sunshine Coast

5 PUBLICATIONS 33 CITATIONS

SEE PROFILE

Janet Mann

Georgetown University

128 PUBLICATIONS 6,020 CITATIONS

SEE PROFILE

All content following this page was uploaded by Vivienne Foroughirad on 15 June 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332878311_Quality_and_quantity_of_genetic_relatedness_data_affect_the_analysis_of_social_structure?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332878311_Quality_and_quantity_of_genetic_relatedness_data_affect_the_analysis_of_social_structure?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Shark-Bay-Dolphin-Research-Project?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Tattoo-like-skin-lesions-in-bottlenose-dolphins-in-Shark-Bay-Australia?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vivienne_Foroughirad?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vivienne_Foroughirad?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Georgetown_University2?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vivienne_Foroughirad?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexis_Levengood?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexis_Levengood?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_the_Sunshine_Coast?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexis_Levengood?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Janet_Mann2?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Janet_Mann2?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Georgetown_University2?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Janet_Mann2?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vivienne_Foroughirad?enrichId=rgreq-e4c37d26a056b8bce7babfe95afd5939-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg3ODMxMTtBUzo3Njk5NDcxMjcwMDEwODhAMTU2MDU4MTEwODczMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Mol Ecol Resour. 2019;00:1–14. | 1© 2019 John Wiley & Sons Ltd

|

Genetic data have given us invaluable insights into understanding 
social structure (Amos, Schlotterer, & Tautz, 1993; McCracken Gary 
& Bradbury Jack, 1981; Morin et al., 1994), kin selection and inclu-
sive fitness (Burland, Barratt, Nichols, & Racey, 2001; Dickinson 
& Akre, 1998), and the heritability of phenotypes (Ritland, 2000). 
Estimating relatedness between individuals is a fundamental first 
step in investigating all these phenomena. The precision and ac-
curacy of genetic information used in estimating relatedness is 
dependent on the type and number of markers used, the method 

of marker discovery, filtering processes, and the method of esti-
mation, in addition to the naturally varying characteristics of the 
population and genome in question. Within behavioural ecology, 
genetic relatedness has typically been calculated using small sets 
of highly polymorphic markers such as microsatellites or ampli-
fied fragment length polymorphisms. Microsatellites are the most 
common marker employed to infer parentage and kinship in wild 
animal populations (Jones et al., 2010; Städele & Vigilant, 2016), 
favoured for their tendencies to be highly polyallelic and con-
served between species (Sawaya, Lennon, Buschiazzo, Gemmell, 
& Minin, 2012).
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Abstract
Kinship plays a fundamental role in the evolution of social systems and is considered 
a key driver of group living. To understand the role of kinship in the formation and 
maintenance of social bonds, accurate measures of genetic relatedness are critical. 
Genotype-by-sequencing technologies are rapidly advancing the accuracy and preci-
sion of genetic relatedness estimates for wild populations. The ability to assign kin-
ship from genetic data varies depending on a species’ or population's mating system 
and pattern of dispersal, and empirical data from longitudinal studies are crucial to 
validate these methods. We use data from a long-term behavioural study of a polygy-
nandrous, bisexually philopatric marine mammal to measure accuracy and precision 
of parentage and genetic relatedness estimation against a known partial pedigree. 
We show that with moderate but obtainable sample sizes of approximately 4,235 

-
edness coefficients can be obtained. Additionally, we subsample our data to quantify 
how data availability affects relatedness estimation and kinship assignment. Lastly, 
we conduct a social network analysis to investigate the extent to which accuracy and 
precision of relatedness estimation improve statistical power to detect an effect of 
relatedness on social structure. Our results provide practical guidance for minimum 
sample sizes and sequencing depth for future studies, as well as thresholds for post 
hoc interpretation of previous analyses.

cetacean, genotype-by-sequencing, kinship, relatedness, SNPs, social network
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As sequencing technology improves in cost and efficiency, ge-
notyping-by-sequencing methods that can capture more abundant 
markers, such as single nucleotide polymorphisms (SNPs) are quickly 
rising in popularity (Narum, Buerkle, Davey, Miller, & Hohenlohe, 
2013). Methods such as restriction site associated DNA sequencing 
(RAD-sequencing) (Davey & Blaxter, 2010) have allowed researchers 
to obtain large sets of genome-wide sequence data in the absence 
of known markers, greatly expanding the number of informative loci 
that can be quickly characterized for non-model organisms.

Comparisons of SNPs and microsatellites have demonstrated that 
even small numbers of SNPs perform as well or better than microsat-
ellites in estimating kinship and parentage (Attard, Beheregaray, & 
Möller, 2018; Hauser, Baird, Hilborn, Seeb, & Seeb, 2011; Kaiser et al., 

-
idence that large panels of SNPs (>10,000) can estimate genetic cor-
relations (e.g., heritability; Bérénos, Ellis, Pilkington, & Pemberton, 
2014) or genomic inbreeding and relatedness (Wang, 2016), better 
than multigenerational pedigrees. Traditional estimates of genetic 
relatedness from small sets of markers have typically performed well 
with respect to bias, i.e., relatedness values averaged within large 
sets of kin accurately reflect expected values. These estimates can 
be useful for comparing average relatedness values between groups, 
but small numbers of markers also result in high variance within each 
category. This results in overlapping ranges of relatedness estimates 
between categories, which prevents the assignment of individual 
pairs to a specific kinship category and the reconstruction of logi-
cal pedigrees (Taylor, 2015; Van Horn, Altmann, & Alberts, 2008) as 
well the ability to measure the proportion of different relationship 
classes within a population (Csilléry et al., 2006). Assigning a pair to 
a single kinship category becomes increasing more difficult with the 
distance of the relationship, for example cousin-level relationships 
and beyond can rarely be reliably delineated, and therefore we can-
not know what role, if any, they play in shaping social structure or 
inclusive fitness.

These methodological advances should be complemented by 
empirical validation of the power and precision of relatedness es-
timation methods from species with different mating systems, dis-
persal patterns, and levels of inbreeding (Kopps, Kang, Sherwin, & 
Palsbøll, 2015; Pemberton, 2008). Such guidance is necessary for 
researchers to make informed decisions regarding research design 
tradeoffs in effort and cost, such as between sample collection and 
sequencing methods. While progress has been made to character-
ize error in the relatedness estimates themselves, usually in relation 
to pedigree-based expectations (Goudet, Kay, & Weir, 2018; Wang, 
2016), there is still little information about how accuracy and preci-
sion of these estimates affect downstream analyses of kinship, social 
behaviour, and social bonding.

In this analysis, we use demographic and behavioural records 
from a long-term study of residential Indo-Pacific bottlenose dol-
phins (Tursiops aduncus) in Shark Bay, Western Australia to investi-
gate variance in relatedness estimation with differing quantities of 
data and carry these results forward to investigate their downstream 
effects on inference in social structure. This system comes with the 

advantages of a multigenerational observed maternal pedigree com-
bined with three decades of social associations. The Shark Bay pop-
ulation is bisexually philopatric with neither sex dispersing from their 
natal range (Tsai & Mann, 2013), allowing researchers to continue 
to observe both sexes throughout their adult lives. Furthermore, 
their social system is characterized by relatively high fission-fusion 
dynamics without stable groups (Aureli et al., 2008), such that in-
dividuals can frequently encounter both male and female maternal 
and paternal kin as well as unrelated individuals within their home 
ranges, and so can choose from all kinship categories when selecting 
social associates. Previous studies have demonstrated that despite 
bisexual philopatry, mothers maintain much closer ties to daughters 

and relatedness is likely most important in social bonds between 
adult females (Frère, et al., 2010), while males may employ different 
social strategies dependent on alliance formation (Krützen, Sherwin, 
Connor, & Barre, 2003).

We use genotyping-by-sequencing to generate a moder-
ately-sized panel of high-quality independent SNPs and conduct 
parentage assignment, which we validate against our observed mul-
tigenerational maternal pedigree and combine to produce expected 
relatedness coefficients. We then use a combination of simulations 
and subsampling of our data set to investigate, in detail, the relation-
ship between the amount of genetic data (number of individuals and 
number of markers) and increased kinship resolution. We then carry 
the sets of relatedness estimates forward into a social network anal-
ysis investigating the impact of relatedness on social associations. 
These analyses serve to illustrate how power and effect size can 
vary between models constructed with different amounts of data, 
and has implications for the comparison of social organization be-
tween populations.

This study contributes to a growing body of literature aimed at 
understanding the power of SNP markers and genotyping-by-se-
quencing methods to assess kinship in wild mammals (Andrews et al., 
2018; Attard et al., 2018). Further, this is to our knowledge the first 
study for any mammalian species to investigate how the accuracy 
and precision of such relatedness estimation affects inference in the 
analysis of social structure.

|

|

Data were obtained from a longitudinal study of Indo-Pacific bot-
tlenose dolphins (Tursiops aduncus) in the eastern gulf of Shark Bay, 
Western Australia. The population is resident and stable, with lit-
tle evidence of migration and both sexes exhibiting natal philopatry 
(Tsai & Mann, 2013). Since 1984, a study area of about 300 km2 has 
been regularly surveyed and demographic, behavioural, and eco-

identified through photographs using individual markings on the fin 
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since the 1980s and were determined either from observation of the 
individual as a calf or estimated from the degree of ventral to dorsal 
speckling (Krzyszczyk & Mann, 2012). Mother-offspring relation-
ships were determined though observations of offspring nursing or 
swimming in the nursing access position (under the mother in con-
tact with her abdomen) (Mann, Connor, Barre, & Heithaus, 2000). 
The average weaning age of offspring is over four years (Mann et al., 
2000) so for each mother-offspring pair we had on average 19.1 days 
of observations used to confirm the relationship.

Social associations were determined during these surveys by 
grouping individuals using a 10 m chain rule (Smolker, Richards, 
Connor, & Pepper, 1992). GPS locations of the groups were recorded 
when the boat was within 50 m of the group.

boat-based surveys using a remote biopsy system (Krützen et al., 
2002) in accordance with the University of the Sunshine Coast 
Animal Ethics Committee approval. Samples were collected op-
portunistically, but with preference for animals that could be 
matched to a catalogue in real time for inclusion in behavioural 
analyses. Tissue samples were stored in either dimethyl sulphox-
ide or an RNA-stabilizing buffer and DNA was extracted via iso-
propanol precipitation with the Qiagen Gentra Puregene Tissue 

and 151 females, which represent 44% of animals greater than two 
years of age encountered in the study site during the sampling 
period (Figure S1).

|

DNA was sequenced using restriction-associated digest methods 
at Diversity Arrays Technology in Canberra, Australia using their 
proprietary DArTseq technology. DArTseq is a reduced representa-
tion sequencing approach, similar to RAD-sequencing. DNA was di-
gested with PstI and SphI barcoded, multiplexed, and sequenced on 
an Illumina HiSeq 2500. Sequencing generated an average of 2.04 

(SNPs) were identified using a hybrid approach (Rochette & Catchen, 
-

sulting sequences matched up to the genome of the closest related 
species available. This approach helps separate out false-positive 
loci and allows for the positioning of loci to help remove variants 
in linkage disequilibrium, without compromising the consistency of 
genotype calls. This approach is widely applicable for species which 
lack a genome or if a closely related species has a genome of much 
higher quality. SNPs were called using the DArTsoftS pipeline (Cruz, 
Kilian, & Dierig, 2013; Kilian et al., 2012) and mapped to a 114.5× 
high-coverage Tursiops truncatus genome (NIST Tur_tru v1) using 
NCBI BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990). This re-
sulted in 9,928 SNPs called with an average density of 30.8 reads 
per sample per locus, 86.6% of which mapped to the genome with 
an E-value below 2.4 × 10 . Seven samples were run in duplicate 
from which we calculated a mean genotyping error rate of 0.01895 

Single nucleotide polymorphisms were selected for analysis if 
they were typed in at least 95% of individuals, had an average read 
depth of at least 10 and a minor allele frequency (MAF) of at least 
0.01 (Anderson et al., 2010; Goudet et al., 2018). SNPs were checked 
for Hardy-Weinberg equilibrium using the mid-p adjustment routine 
in PLINK 1.9 (Graffelman & Moreno, 2013) and any SNP that fell out-
side the 0.05 p-value cutoff was removed. To control for linkage dis-
equilibrium, we treated our large scaffolds (n = 216;  = 9.8 Mbp) as 
independent and we used a sliding window filter with a window size 
of 50, a shift of five, and a variance inflation factor threshold of two, 
also implemented in PLINK 1.9 (Chang et al., 2015). We set a maximum 
heterozygosity filter of 0.6 to remove any potentially paralogous 
loci, and additionally removed five SNPs that segregated perfectly 
by sex and were assumed to be XY paralogs (Table S1). We checked 
for the presence of mitochondrial DNA in our sequences by blasting 
against a South Australian Tursiops aduncus mitochondrial genome 

no matches were returned within the default thresholds, so we as-
sumed our reads were all from nuclear DNA. Lastly, we removed any 
SNP that had been mistyped between two or more pairs of duplicate 
samples. This resulted in a total of 4,235 SNPs, and we retained all 
samples that were typed at a minimum of 95% of these loci (  ± SD 
99.86 ± 0.004; n -
erozygosity were calculated for these samples using the R package 
hierfstat (Goudet, 2005).

|

To choose an appropriate relatedness estimator for our data set, 
we first tested several estimators on a set of simulated genotypes 
that had characteristics similar to our data. We used the software 
COANCESTRY (Wang, 2011) to simulate 100 pairs of genotypes for dyads 
in each of five categories: (a) parent-offspring r = 0.5, (b) half-siblings 
r = 0.25, (c) half-avuncular (e.g., aunt-niece) r = 0.125, (d) half-cousins 
r = 0.0625 and (e) unrelated pairs r = 0. We selected these categories 
as representative of the kinship categories most likely to be encoun-
tered in a polygynandrous population. The simulated genotypes had 
the same number of SNPs and distribution of alleles frequencies as 
found in our real data, as well as the same amount of missing data. 
We set the genotyping error rate to be the same for all loci at 0.019 
based on the error rate calculated from samples run in duplicate. We 
then compared six relatedness estimators, four moment-based esti-
mators: Wang (2002), Lynch and Ritland (1999), Ritland (1996), and 
Queller and Goodnight (1989), and two maximum likelihood estima-

We evaluated estimators by comparing the Pearson correlation 
coefficients between our estimated and expected relatedness val-
ues and calculating the root-mean-square error (RMSE) within and 
across kinship categories in the simulated data set.

Once we had determined which estimators performed well on 
the simulated data, we used those estimators to calculated genetic 
relatedness between all pairs of individuals in our real data also using 
COANCESTRY. We then tested the sensitivity of those estimators to the 

info:ddbj-embl-genbank/KF570335.1
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sample size of individuals and loci by resampling our real data and 
calculating population-wide variance in relatedness estimates. We 
compared results for seven smaller quantities of SNPs (50, 100, 200, 
400, 800, 1,600, 3,200) and individuals (10, 20, 30, 40, 50, 100, 150) 
by randomly subsampling the data, recalculating allele frequencies 
and pairwise relatedness, and then computing the discrepancy be-
tween each pairwise relatedness value in the subsampled and full 
data set. We compared all variations of number of markers and 
number of individuals for a total of 64 combinations, running 100 
iterations of each combination and reporting the median root mean-
square error for each level of subsampling.

|
reconstruction

We verified that these data could be used to recover our observed 
mother-offspring relationships by running a naïve parentage assign-
ment using the R package Sequoia
maximum-likelihood based approach to assign parentage based on 
the log-likelihood ratios of first, second, and third-degree over unre-
lated relationships. We set the Sequoia input parameters to our ob-
served genotyping error rate and the default number of mismatches 
and minimum and threshold log-likelihood ratios. Sex and birth year 
were included for all sampled individuals. We included sibship clus-
tering, which imputes predicted shared parents for sibling dyads in 
which the shared parent was not included in the data set. We used 
the full set of 4,235 SNPs and set the maximum number of offspring 
to 20 for sibship clustering, as females have only been observed to 
have a maximum of about seven offspring that survive past weaning 
over the course of the lifetime but the number of offspring a male 
could produce is unknown and possibly much greater.

|

We used our parentage assignments generated by Sequoia and our 
observed maternal pedigree to calculate expected pedigree relat-
edness values for a subset of pairs with known kinship status. We 
included all first-degree relatives (r = 0.5) but limited other rela-
tionships to only those pairs in which all four parents were known. 
We further required that third-degree and fourth-degree relative 
pairs (r = 0.125 and r = 0.0625) had to have at least three out of 
four parents genotyped in the sample, and all unrelated pairs had 
to have all four parents genotyped to be included. We used the R 
package kinship2 (Sinnwell, Therneau, & Schaid, 2014) to calculate 
the expected pedigree relatedness coefficient. For the individuals 
that had only one known parent, we imputed unique second parents. 
We examined correlations and RMSE between pedigree and genetic 
relatedness for all pairs, and classification rates between pairs with 
expected pedigree relatedness values in the set (0, 0.0625, 0.125, 
0.25, 0.5), excluding pairs with pedigree relationships intermediate 
to the categories above, e.g., r
simulated data to set classification thresholds for the genetic relat-
edness estimates between the five kinship categories such that each 

category included the maximum amount of correct assignments 
(true positives) while limiting incorrect assignments (false positives) 
to <5% within each category. We then applied these genetic related-
ness thresholds to our empirical data and compared classification 
rates that could be achieved from relatedness coefficients calculated 
from different number of markers (50, 100, 200, 400, 800, 1,600, 
3,200). Allele frequencies were set to those calculated using all indi-
viduals in the study.

|
network structure

Finally, we examined how the accuracy and precision of our related-
ness measurements would affect inference about the relationship 
between relatedness and social associations in our population. To do 
this we modelled association rates between pairs of individuals using 
network-based regressions that included their genetic relatedness, 
age difference, and home range overlap. As the Shark Bay popula-
tion is highly sex segregated (Galezo, Krzyszczyk, & Mann, 2018) 
and males and females are suspected to employ different strategies 
with respect to forming kin-based relationships (Frère et al., 2010; 
Krützen et al., 2003), we did not examine mixed-sex relationships 
and instead ran separate models for male-male and female-female 
pairs.

sightings post-weaning. Individuals in the population are typically 
weaned at around four years of age, but with a range of 2–8 years 
(Karniski et al., 2018; Mann et al., 2000). We selected an inclusion 
threshold of 35 sightings in order to accurately capture the degree 
of spatial overlap between individuals (see Supporting Information 
for details), as well as each individual's position in the social net-
work (Stanton & Mann, 2012). We estimated the association rate 
between each pair of individuals using the simple ratio index 

(Equation 1).

X is the number of days both individuals (A and B) were seen in 
the same group, Ya is the number of days individual A was seen 
without B, Yb is the number of times individual B was seen without 
A, and Yab is the number of days both individuals were seen but in 
separate groups. We selected the simple ratio index instead of the 
more commonly used half-weight index as the simple ratio per-
forms more consistently on sampled data in the absence of infor-
mation on true association rates (Hoppitt & Farine, 2018). For each 
pair, the index was only calculated over the time frame where both 
individuals were alive and post weaning. We censored availability 
by either death dates or six months after the last sighting date as 
death dates could not always be accurately estimated for individ-
uals in our population. We modelled the response variable, associ-
ation index, as a weighted binomial variable, taking the numerator 

SRI=
X

X+Ya+Yb+Yab
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of the association index (number of days observed together) to 
be the number of successes and the denominator (total number 
of days either individual was observed) to be the number of tri-
als (Whitehead & James, 2015). As network regressions perform 
poorly in the presence of missing data, we set the response for 
pairs that did not overlap in time (0.03% of pairs) to 0 with the 
number of trials (observation weights) equal to 1.

Age was included as the absolute difference in years between 
each pair. Home range overlap was measured as the volume of in-
tersection between each pair's home ranges. Home ranges were 
estimated using kernel-based utilization distributions (UDs) imple-
mented in adehabitatHR (Calenge, 2006). Utilization distributions 
were calculated using individually-specified reference bandwidth 
smoothing parameters (Worton, 1995), and a simplified boundary 
derived from the coastline was included as a barrier (Benhamou & 
Cornelis, 2010). Any remaining land area was removed from all final 
UDs and the probability densities of each UD were restandardized 

calculated for all pairs using the 90% kernel of the UD for each indi-
vidual. Because this population is bisexually philopatric and lives in 
an overlapping mosaic of home ranges, we expected relatedness val-
ues to positively correlate with home range overlap. Therefore, we 
examined the correlation between these parameters and variation 
inflation factors before hypothesis testing.

We then ran a series of social network models, varying the 
number of individuals and the number of markers used to calcu-
late their relatedness coefficients according to the subsampling 
scheme described above, and keeping the values for the response 
variable and the other predictors, home range overlap and age dif-
ference, fixed. We ran 100 iterations of each model with each of 

1,600, 3,200, 4,235) SNPs. Allele frequencies were obtained from 
a subsample of individuals twice as large as those included in each 
model. For example, in the model with 20 female subjects, allele 
frequencies were calculated using 40 individuals, under the as-
sumption that even when modelling a single sex, samples from both 
sexes would have been collected. We implemented each model as 
a logistic regression, with model intercepts and coefficients esti-
mated using the regular generalized linear model routine in R, and 
then assessed parameter significance using the multiple regression 
quadratic assignment procedure (MRQAP). MRQAPs are a method 
of hypothesis testing specifically developed for nonindependent 
network data. MRQAPs use matrix permutations designed to re-
duce type I error that can result from the inherent autocorrelation 
of network data, which violates traditional regression assumptions 
(Krackhardt, 1988). We used the Dekker double semi-partialling 

the R package sna (Butts, 2008), using the netlogit function modi-
fied to accept a weights parameter (number of trials). We chose the 
Dekker double semi-partialling method to minimize the correlation 
between the variable of interest and the control variables under 
permutation. We used the z-value pivotal test statistic and 1,000 
permutations to assess significance.

To compare the effect size of relatedness between the data sets 
with different sample sizes of individuals and different numbers of 
markers, we used the generalized partial coefficient of determina-
tion (R2

V
) to measure the proportion of the variance in association 

strength that is predictable from the relatedness coefficient, imple-
mented in the R package rsq -
lation of effect sizes and power for network-based regressions are 
poorly understood, and therefore caution that the results presented 
should only be interpreted as relative rather than absolute measures 
of power.

Lastly, we compared the prevalence of type II error, i.e., falsely 
accepting the null hypothesis that relatedness has no effect on 
social association, in the subsampled models using alpha = 0.05 to 
assess significance throughout. All analyses were performed in R 
environment version 3.5.1 (R Core Team, 2018) unless otherwise 
noted.

|

|

(Ho = 0.241 ± 0.165) slightly less than expected (He

When we compared relatedness estimators on simulated data, we 
found that the maximum likelihood estimators consistently outper-
formed the moment-based estimators with respect to correlation 
between expected and observed relatedness, and RMSE within and 
across kinship categories (Figure S2; Table S2), with the exception 
of the LynchRd estimator which performed best for the half-cousin 
(r = 0.0625) category. Overall, however, all estimators gave compara-
ble estimates on the simulated data set with correlation coefficients 
above 0.99 and all RMSE below 0.04. As the dyadic (DyadML) and 
triadic (TrioML) maximum likelihood estimators performed almost 
identically on the simulated data, we chose the DyadML estimator 
for subsequent analyses based on its computational speed.

When we applied the estimators to our real data, population-
wide estimates of relatedness among the full and subsampled data 
sets showed obvious differences in the degree to which estimates 
improved with additional data (Figure 1). The maximum likelihood 
estimator had a third of the error of the non-likelihood estimators 
at the smallest sample sizes, but including more individuals actu-
ally increased population-wide error when low numbers of markers 
were used. Since the best estimates on simulated data compared to 
expected values produced RMSE values at or below 0.03, we took 
0.03 as an arbitrary threshold to assess convergence relative to the 
full data set. Using the maximum likelihood estimator, this level of 
convergence was achieved with as little as 800 SNPs for any num-
ber of individuals. In comparison the QuellerGt reached the same 
threshold with 3,200 SNPs and 40 individuals, or 1,600 SNPs and 
100 individuals. The average relatedness calculated using the dyadic 

0.014 ± 0.045 (mean ± SD
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|
reconstruction

Of the 81 known mother-offspring pairs in our data set, 98.8% were 
correctly genetically assigned to their observed mother, with one 
individual not assigned a parent although the mother was in the 
sample. Six additional pairs were assigned in which the mother was 
not observed in the years immediately following the putative off-
spring's birth, but in no case was a mother genetically assigned that 
conflicted with the behavioural observation. Estimated mean con-
fidence probabilities in the assignment calculated using Sequoia's 
EstConf function and 20 simulated pedigrees with 60% missing 

mother-offspring and 53 father-offspring pairs were assigned, with 
an additional four mother-offspring and 23 father-offspring pairs 
imputed from the sibship clustering. We detected three pairs of full 
siblings in the data set, but the majority of sibling pairs (n = 129) 
were half-siblings. When we added these data to our known par-
tial pedigree and calculated expected related coefficients for pairs 
with known kinship, we had 149 pairs at r = 0.5 level, 129 pairs at 
r = 0.25, 48 at r = 0.125, 20 at r = 0.0625, and 492 at r = 0, or unre-
lated (Figure 2).

|

In our simulated data set, we were able to use our estimates of ge-
netic relatedness to discriminate between all five kinship categories 
by achieving true positive classification rates of 85%–100% for all 
categories while limiting false positives to <5% (Figure S3). When we 
applied the classification thresholds derived from simulated data to 
the empirical data, using all available markers there was no misas-
signment between pairs related at the r = 0.5, 0.25, and 0 levels. 

However even in our full data set, there was some misassignment 
between half-cousin (0.0625) and half-avuncular level relatedness 
(0.125), and half-avuncular and half-siblings (0.25) (Figure 3). We 
found we could attain 95% correct classification for r = 0, 0.25, 0.5, 
and 80% correct classification for the r = 0.125 category, but never 
more than 65% correct classification in the r = 0.0625 category with 
a high rate of false positives (Table 1). Some of the discrepancy be-
tween classification ability in the simulated and empirical data sets 
may stem from missing data in the pedigree, as there were few indi-
viduals for which more than one to two ancestral generations were 
known and genotyped.

When we applied the classification thresholds to our subsam-
pled data sets, we found that the r = 0.5 category only required 50 
SNPs for 80% correct classification and 200 SNPs for 95%, r = 0.25 
required 400 SNPs for 80% correct classification and 1,600 for 95%, 
r = 0.125 required 3,200 SNPs for 80% correct classification but did 
not achieve 95% correct classification, and unrelated required 800 
SNP for 80% correct classification, and 1,600 for 95% classification 
with our designated thresholds (Table 1).

|

We examined how the variation in relatedness estimation affected 
the analysis of social structure by conducting a series of network 
regressions on subsampled data.

The Spearman rank correlation coefficient between home 
range overlap and pairwise relatedness in the full social data set 
(n
two (Zuur, Ieno, & Elphick, 2010), so we incorporated both home 
range overlap and relatedness as predictors in the same models. 
We first ran two models using our full data set, one for male-male 
and one for female-female associations. For female-female pairs, 

Variance in population-wide relatedness estimates when varying numbers of individuals and SNPs are used. Median RMSE is 
the median of the root mean square error relative to the full data set over 100 randomized subsamples at each level of data. The estimators 
shown are ML = dyadic maximum likelihood (Milligan, 2003) on the left in blue and QG = QuellerGt (Queller & Goodnight, 1989) shown on 
the right in green [Colour figure can be viewed at wileyonlinelibrary.com]
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both relatedness and home range overlap significantly predicted 
association rate, but age difference did not. We found that un-
like for females, relatedness was not a significant predictor of 

association strength for male-male pairs in our model (Table 2). 
Therefore, we conducted our subsequent subsampling analysis 
using only female data.

Distribution of genetic relatedness estimates calculated with different numbers of markers against expected relatedness 
values derived from the pedigree. Number of SNPs used is shown in the upper left-hand corner of each panel. Smoothed density curves are 
shown using shaded regions for the most common pedigree categories (0, 0.0625, 0.125, 0.25, 0.5), and pedigree values are slightly jittered 
for visualization purposes. Horizontal lines represent the mean for those categories
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In the female model, relatedness was a significant parameter 
which explained about 12.8% of the variance as measured by par-
tial R2

V
. We defined a type II error rate as the proportion of subsa-

mpled models in which the estimated effect of relatedness did not 
meet the threshold for significance even though it was a signifi-
cant parameter in the full data set. We found that it took at least 
60 individuals and 800 SNPs before a type II error rate less than 
5% was achieved. Low numbers of SNPs resulted in higher rates of 
type II error and on average lower partial R2

V
 values, though with 

high variation (Figure 4). For models with smaller numbers of indi-
viduals, we found that the set of individuals chosen had a strong 
effect on the value of partial R2

V
, even when relatedness estimates 

were obtained from the full data set.

|

In this study we investigated whether deriving genotypes via DArT 
sequencing could produce more precise estimates of kinship than 
those reported from studies using other genotyping methods which 
produce fewer markers for analysis. We then investigated whether 
those improved estimates provided increased power when model-
ling the effect of relatedness on social structure.

|
relatedness estimation

We demonstrate successful parentage assignment and good cor-
respondence between pedigree and genomic relatedness using 
a moderately-sized panel of SNPs generated from DArTSeq. The 
correlation between pedigree and genomic relatedness that we 
achieved was comparable to that predicted by previous simulation-
based studies using similar numbers of SNPs (Kopps et al., 2015).

Though we could not directly compare our results with those that 
would have been generated from the most commonly used type of 
marker, microsatellites, we can use values from the literature to gen-
erate a rough estimate. There are about 26 microsatellites that have 
been characterized for bottlenose dolphins with an average of about 
6 alleles each in our population (Kopps, Kang, Sherwin, & Palsbøll, 
2014). This suggests a scaling factor for translating informativeness 
from the number of microsatellites to number of SNPs to be within 
the 5–10 range reported in previous studies (Santure et al., 2010; 
Städele & Vigilant, 2016; Wang, 2016), and therefore the power we 
would get from the 26 known microsatellites would likely have been 
analogous to the results we obtained using about 200 SNPs.

We find that the correlation between relatedness estimates and 
expected pedigree relatedness improves up to about 1,600 indepen-
dent SNP markers in a sample of at least 20 individuals. These esti-
mates alone can also be used to develop classification thresholds that 
can distinguish between several kinship categories (parent-offspring, 
half-sibling, unrelated) with greater than 95% accuracy, and more dis-
tant categories (e.g., half-avuncular) with 80% accuracy. We note that 
the pedigree we used to assign expected relatedness coefficients was 
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incomplete, and therefore some of the discrepancy between pedi-
gree and genetic relatedness in our analysis may be inflated because 
of missing data. However, we also left out some relatively rare kinship 
categories (e.g., those with an expected r
(e.g., r = 0.03125) expected categories of kinship from our related-
ness category assignment as they were either rare in our population, 
or rarely detected due to our shallow pedigree. Therefore, we had 
limited power to assess their accuracy and how they would affect 
the accuracy of other categorical assignments. The accuracy of our 
categorical assignments is only relative to the five kinship categories 
we selected for analysis, and applying these categorical thresholds to 
a whole population will result in misclassification for those excluded 
categories and higher rates of false positive assignments.

Maximum likelihood estimation of relatedness was the most 
robust estimator for our data over a range of sample sizes, but re-
sults suggest significant diminishing returns to prioritizing number 

of samples over number of markers. Relative error in some cases 
increased when a larger proportion of the population was sampled 
(Figure 1; Figure S2). Though somewhat counterintuitive, this re-
sult has been found in other studies (Kopps et al., 2015), and is a 
consequence of the error in estimating allele frequencies when the 
frequencies are calculated from small samples of individuals. For 
example, in the case of biallelic SNPs, if a dyad in a sample of 10 in-
dividuals shares a private allele that is identical by state, that minor 
allele's frequency is calculated as 0.20, which is considered when 
weighting the likelihood that the allele is actually identical by de-
scent. Alternatively, if a dyad in a sample of 100 individuals shares a 
private allele that is identical by state, that minor allele's frequency 
is 0.02, which gives greater weight to the likelihood that the allele 
is identical by descent than 0.2 would. With large numbers of loci, 
a private or otherwise rare allele that is identical by state will have 
much less weight on the overall likelihood of coancestry, but with 

Model SE z p

Female-female Intercept 0.036 –205.191 –

Relatedness 1.820 0.069 26.290 <0.001

Home range 
overlap

6.585 0.051 129.342 <0.001

Age difference –0.012 0.001 –9.018

Male-male Intercept 0.042 –183.024 –

Relatedness 0.161 0.658

Home range 
overlap

0.052 <0.001

Age difference 0.002 –40.596 <0.001

Bold values denote statistical significance at the p < 0.05 level.

Model results from the 
logistic regression with multiple-
regression quadratic assignment 
procedure for both male-male (n = 84) 
and female-female (n = 92) networks with 
1,000 permutations each.

Box plots show the effect size of relatedness on association strength, measured as the coefficient of partial determination (R2

V
),  

across logistic network-based regressions with different levels of data. Box heights are the interquartile ranges (IQR) bisected by median 
values, and whiskers extend to 1.5 times the IQR. The black dotted line is the R2

V
 value obtained from the full data set. The overlaying solid 

red lines show type II error rates, or the proportion of models in which the p-value obtained for the relatedness parameter is above the 
alpha = 0.05 threshold resulting in a type II error when the full data set is taken as truth. Red dashed lines show the 20% type II error rate 
(80% power) and 5% type II error rate (95% power)
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small numbers of loci this will result in the tendency to overesti-
mate relatedness, especially for pairs near the boundary condition 
(0 or unrelated). Since most pairs in the sample will be unrelated, 
this bias will outweigh any improvement for related pairs with rare 
alleles that are actually identical by descent. The method-of-mo-
ments estimators such as Queller and Goodnight's (1989) do not 
have a boundary condition at 0 and are statistically unbiased, but 
in many cases the increased variance in their estimates results in 
greater overall error than the maximum likelihood estimator. These 
effects may be somewhat remedied by choosing a higher minor 
allele frequency threshold, but this will result in fewer total loci 
included. Balancing these effects may depend on the precise re-
search question, and in some cases false discovery rate procedures 
may also be appropriate (Skaug, Bérubé, & Palsbøll, 2010). Even 
with large amounts of SNP data, other parameters such as genotyp-
ing error, allelic dropout, and the true distribution of allele frequen-
cies in the population may affect estimator accuracy and precision 
(Attard et al., 2018), and we recommend conducting simulations to 
choose the best estimator for each study.

As more assembled genomes become available, incorporating 
patterns of shared alleles along chromosomes (Browning & Browning, 
2013) and the use of more sex-linked and mitochondrial markers may 
improve relatedness estimation, especially in discriminating among 
classes of relatedness that share the same expected coefficient, 
such as grandparents and half-siblings (both r = 0.25). Combining 
log-likelihood ratios with relatedness coefficients may also im-
prove categorical discrimination in some cases (Städele & Vigilant, 
2016), and new relatedness estimators are rapidly being proposed 
and evaluated (Goudet et al., 2018). Bayesian approaches that allow 
the incorporation of uncertainty into the relatedness estimates may 
also improve model inference (O'Hara, Cano, Ovaskainen, Teplitsky, 
& Alho, 2008). Importantly, much of our evaluative framework as-
sumes that genetic relatedness is informative because it allows us to 
estimate a socially meaningful kinship category, rather than an abso-
lute percentage of genome sharing (Speed & Balding, 2015; Wang, 
2016). Depending on the method of kin recognition in each species, 
estimation of different aspects of relatedness may be more relevant.

|
structure analysis

The results of our analysis suggest that male-male and female-fe-
male pairs experience different effects of relatedness on their as-
sociation strengths. This is expected as several long-term studies of 
the population have shown that kin relationships are important for 
female bonding (Frère et al., 2010; Mann et al., 2012), while male-
male bond formation has a more complicated relationship with kin-
ship that varies with alliance structure (Krützen et al., 2003). We 
note that our results do not show that male kin do not form bonds, 
only that they do not do so at rates higher than expected based on 
their home range overlap.

In our social network models, we found that model precision 
(bias and variance in effect size estimates) consistently improved up 

to about 400 SNPs, with similar results for model power. In our data 
set, 80% power could be achieved with 40 individuals using relat-
edness estimates derived from 1,600 SNPs, or with 50 individuals 
using as little as 200 SNPs. After about 400 SNPs, model power and 
precision benefited much more from increasing the sample size than 
from increasing the resolution of the relatedness estimates.

Statistical assessment of the effect of relatedness on social as-
sociations in the wild will often suffer from low power for several 
reasons, including that network observations are by nature non-inde-
pendent, and within the networks, kin can be relatively rare. The lack 
of independence in dyadic observations and potential structural au-
tocorrelation can make them unsuitable for traditional ordinary least 
squares regressions because of high rates of type I error (Krackhardt, 
1988). As a result, methods that correct for this bias, including 
MRQAPs, are conservative by design. Regarding questions involv-
ing kinship and relatedness, the highly skewed distribution of relat-
edness also means that there could be very different proportions of 
kin in small subsamples. In our sampled population about one out of 
every 16 dyads share a relatedness coefficient greater than or equal 
to r = 0.0625. Therefore, in models with 20 individuals (190 pairwise 
relationships), there are only 12 (95% CI: 6–19) or so pairs that can be 
classified as kin, and the actual proportion may vary widely based on 
whether the individuals are sampled randomly from the population, 
or in groups as they are encountered. This variation in the proportion 
of relatives due to sampling protocol could have significant effects on 
model output. Sex differences in kin affinity are also common in many 
populations and could affect the power and precision of network-
based regressions if models are not split by sex. MRQAP methods 
cannot assess interaction effects, and including both sexes in a model 
in which there was an interaction effect would further reduce power.

In this analysis, we focused on a commonly used analytical 
framework in the interest of providing comparable and interpretable 
estimates of power rather than precise inference. While generalized 
linear models, and especially network extensions such as MRQAPs 
are a popular hypothesis testing framework for these types of anal-
yses (Carter, Seddon, Frère, Carter, & Goldizen, 2013; Louis et al., 

of relatedness values and the potential for interactions between pre-
dictors may make this framework unsuitable for some types of social 
analyses. We note that with both moderate numbers of individuals 
(e.g., 30 of one sex, which may require sampling 60 individuals total) 
and markers (e.g., 200 SNPs, equivalent to about 30 microsatellites) 
we obtained a type II error rate greater than 50%. We suggest that 
some studies that use similar levels of data and find no effect of kin-
ship on social associations employ caution when interpreting their 
results. Some studies which have reported no effect of relatedness 
on social structure are likely to be underpowered, especially if kin 
are important for only one sex or some life history stages. This is a 
potential explanation for why previous studies have been unable to 
find a generalized effect of relatedness on social structure between 
social and subsocial systems (Bouskila et al., 2015).

There are other types of models which may offer more power 
with less data, such as exponential random graph models (Silk & 
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Franks, & James, 2011), especially those that incorporate appropri-

has not yet been a comparison of these modelling approaches that 
has focused on inference about relatedness, especially when incor-
porating parameter resolution. Such a study would be very benefi-
cial to questions about kin recognition, kin selection, and altruism in 
wild populations.

|

Accurate measures of relatedness and how kinship affects the for-
mation and maintenance of social bonds is important for under-
standing the adaptive value of sociality and the evolutionary drivers 

and inclusive fitness theory (Hamilton, 1964) relies on knowing the 
relatedness between pairs of interacting individuals in order to prop-
erly weight the cost versus benefit equations. For long-lived, slow 
reproducing, and polygynandrous species with cryptic paternity, es-
timating relatedness from shared genetic markers may be the only 
way to obtain kinship information.

The interplay of relatedness and social structure also have impli-
cations for conservation-based studies. A review of recovery trends 
in cetaceans found that more social species may be particularly slow 
to recover from disturbance or exploitation at the population level 
(Wade, Reeves, & Mesnick, 2012). This may be due to the disrup-
tion of social networks, disturbances to which may interfere with 
reproductive activities or stop the flow of ecological knowledge 

reproducing species should place stress on monitoring and improving 
conditions for reproduction as well as survival when assessing con-
servation risks (Manlik et al., 2016). This will require an understanding 
of the demographics and mating system of a population, which often 
can be uncovered only from high quality genetic relatedness data.

SNPs are set to become the marker of choice for relatedness 
estimation, and the advantage of SNPs over the more commonly 
used microsatellites have been reviewed extensively (Attard et al., 
2018; Morin, Luikart, Wayne, & Palsbøll, 2004; Weinman, Solomon, 
& Rubenstein, 2015). SNP genotyping is still expensive relative to 
microsatellite analyses for many ecological and conservation-based 

in information provided may justify these costs depending on the 
research question. In our population at least, assigning a pair to a 
specific kinship category can require thousands of markers but only 
a couple dozen individuals, while inference about relatedness and 
social structure can be obtained from only a few hundred markers if 
a hundred individuals or more are available.

Our results both demonstrate feasibility and provide practical 
guidelines for minimum sample sizes and sequencing depth for fu-
ture studies of genetic relatedness in wild populations, as well as 
thresholds for post hoc interpretation of previous analyses. We look 

forward to the increased incorporation of relatedness data and ped-
igree reconstruction derived from SNP data in models seeking to 
answer questions about social evolution.
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